Information | |
---|---|
has gloss | eng: In set theory, the Baire space is the set of all infinite sequences of natural numbers with a certain topology. This space is commonly used in descriptive set theory, to the extent that its elements are often called “reals.” It is often denoted B, NN, or ωω. Moschovakis denotes it \mathcalN}. |
lexicalization | eng: Baire space |
instance of | c/Properties of topological spaces |
Meaning | |
---|---|
Italian | |
has gloss | ita: In matematica lo spazio di Baire è l'insieme di tutte le successioni infinite di numeri naturali. |
lexicalization | ita: spazio di Baire |
Dutch | |
has gloss | nld: In de verzamelingenleer, een deelgebied van de wiskunde, is de Baire-ruimte de verzameling van alle oneindige rijen van natuurlijke getallen met een bepaalde topologie. Deze ruimte wordt vaak gebruikt in de beschrijvende verzamelingenleer, in die mate dat de elementen van de Baire-ruimte vaak "reëlen" worden genoemd. De Baire-ruimte wordt vaak aangeduid met B, N N of ωω. Moschovakis duidt het aan met \mathcalN}. |
lexicalization | nld: Baire-ruimte |
Piemontese | |
has gloss | pms: As ciama spassi ëd Baire lë spassi topològich \mathbb N^ \mathbb N } dotà dla topologìa prodot. As agiss ëd në spassi polonèis. Na distansa completa ansima a \mathbb N^ \mathbb N } a lé definìa da :d(x,y) =0 si x=y ::= \frac 12^n+1}} si n a lé mìnim tal che x(n)\neq y(n). |
lexicalization | pms: Spassi ëd Baire |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint