| French |
| has gloss | fra: Le théorème de Herbrand-Ribet est un renforcement du théorème de Kummer avec pour effet le fait que le nombre premier p divise le nombre de classes du corps cyclotomique des racines p-ièmes de l'unité si et seulement si p divise le dénominateur du n-ième nombre de Bernoulli B_n\, pour un certain n, 0 < n < p - 1\,. Le théorème de Herbrand-Ribet précise ce que veut dire, en particulier, lorsque p divise B_n\,. |
| lexicalization | fra: Theoreme de Herbrand-Ribet |
| lexicalization | fra: théorème de Herbrand-Ribet |
| Castilian |
| has gloss | spa: En matemáticas, el Teorema de Herbrand–Ribet es un resultado del número de clase de ciertos campos de números. Es un refuerzo del teorema de Kummer en el sentido que el número primo p divide el número de clase del campo ciclotómico de la p-iésimas raíces de la unidad si y solo si p divide al numerador del n-ésimo número de Bernoulli Bn para algún n, 0 < n < p − 1. El teorema de Herbrand–Ribet especifica en particular, cuando es que p divide a Bn. |
| lexicalization | spa: Teorema de Herbrand Ribet |
| lexicalization | spa: Teorema de Herbrand-Ribet |