| Information | |
|---|---|
| has gloss | eng: Kan extensions are universal constructs in category theory, a branch of mathematics. They are closely related to adjoints, but are also related to limits and ends. They are named after Daniel M. Kan, who constructed certain (Kan) extensions using limits in 1960. |
| lexicalization | eng: Kan extension |
| instance of | e/Adjoint functors |
| Meaning | |
|---|---|
| German | |
| has gloss | deu: Die linksseitige Kan-Erweiterung eines Funktors X\colon \mathcalA} \to \mathcalC} entlang eines Funktors F\colon \mathcalA} \to \mathcalB} ist ein Paar (L\colon \mathcalB} \to \mathcalC}, \varepsilon\colon X \to L\circ F), das die folgende universelle Eigenschaft erfüllt: |
| lexicalization | deu: Kan-Erweiterung |
| Media | |
|---|---|
| media:img | Kan extension universal property diagram.png |
| media:img | Right Kan extension universal property diagram.PNG |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint