| Information | |
|---|---|
| has gloss | eng: Suppose that (\mathcal C,\otimes,I) and (\mathcal D,\bullet,J) are two monoidal categories. A monoidal adjunction between two lax monoidal functors :(F,m):(\mathcal C,\otimes,I)\to (\mathcal D,\bullet,J) and (G,n):(\mathcal D,\bullet,J)\to(\mathcal C,\otimes,I) is an adjunction (F,G,\eta,\varepsilon) between the underlying functors, such that the natural transformations :\eta:1_\mathcal C}\Rightarrow G\circ F and \varepsilon:F\circ G\Rightarrow 1_\mathcal D} are monoidal natural transformations. |
| lexicalization | eng: monoidal adjunction |
| instance of | e/Adjoint functors |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint