| Information | |
|---|---|
| has gloss | eng: Axiom S5 is the distinctive axiom of the S5 modal logic and states that if possibly p, then necessarily possibly p. It also states, perhaps less intuitively and more controversially, that if possibly necessarily p, then necessarily p. The use of S5 is to eliminate excessive qualifiers (or modal operators) to a proposition, and instead, to accept the final qualifier as the only significant qualifier. That is, S5 discounts all but the final "possibly" or "necessarily". |
| lexicalization | eng: Axiom S5 |
| instance of | (noun) (logic) a proposition that is not susceptible of proof or disproof; its truth is assumed to be self-evident axiom |
| Meaning | |
|---|---|
| Hebrew | |
| has gloss | heb: הנחה S5 היא הנחת יסוד (אקסיומה) של מערכת S5 בלוגיקה מודלית. ההנחה מוכרת בשתי גרסאות: * אם פסוק א (פסוק כלשהו) הוא אפשרי, אז הכרחי שפסוק א הוא אפשרי. בהצרנה: [\Diamond p \to \Box\Diamond p] * אם אפשרי שפסוק א הוא הכרחי, אז פסוק א הוא הכרחי. בהצרנה: [\Diamond\Box p \to \Box p] |
| lexicalization | heb: הנחה S5 |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint