Information | |
---|---|
has gloss | eng: In linear algebra, a coordinate vector is an explicit representation of a vector in an abstract vector space as an ordered list of numbers or, equivalently, as an element of the coordinate space Fn. Coordinate vectors allow calculations with abstract objects to be transformed into calculations with blocks of numbers (matrices and column vectors). |
lexicalization | eng: coordinate vector |
instance of | e/Euclidean vector |
Meaning | |
---|---|
French | |
has gloss | fra: En algèbre linéaire, les composantes dun vecteur sont une représentation explicite dun vecteur dun espace vectoriel par une famille de nombres, ou par un élément de lespace vectoriel K^n, K étant un corps commutatif. |
lexicalization | fra: Composantes d'un vecteur |
Hebrew | |
has gloss | heb: באלגברה, קוארדינטות של איבר כלשהו במרחב וקטורי על פי בסיס מסוים שלו הם מספרים המייצגים את גודל ההשפעה של כל אחד מאברי הבסיס על אותו איבר. |
lexicalization | heb: קואורדינטות |
Italian | |
has gloss | ita: Esempi * Consideriamo la base canonica di Kn data da: e1 = (1, 0, 0, ..., 0), e2 = (0, 1, 0, ...,0), ..., en = (0, ..., 0, 1). Per ogni vettore v = (a1, ..., an) di Kn abbiamo v = a1e1 + ... + anen e quindi il vettore v coincide con il vettore delle sue coordinate. * Prendiamo come base di R2 la coppia seguente: B = ((1,1), (1,-1)). Il vettore (1,0) si scrive come (1,0) = 1/2 (1,1) + 1/2 (1,-1) e quindi le sue coordinate rispetto a B sono (1/2, 1/2). * Consideriamo lo spazio vettoriale R2[x] dei polinomi in x di grado al più 2. Consideriamo la base B = (1, x, x2). Le coordinate del polinomio p = 3 - x2 rispetto a questa base sono (3, 0, -1), poiché p = 3*1 + 0*x + (-1)*x2. |
lexicalization | ita: Coordinate di un vettore |
Russian | |
lexicalization | rus: Вектор |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint