Information | |
---|---|
has gloss | eng: In geometric graph theory, the Hadwiger–Nelson problem, named after Hugo Hadwiger and Edward Nelson, asks for the minimum number of colors required to color the plane such that no two points at distance one from each other have the same color. The answer is unknown, but has been narrowed down to one of the numbers 4, 5, 6 or 7. The actual value may actually depend on the choice of axioms for set theory . |
lexicalization | eng: Hadwiger-Nelson problem |
lexicalization | eng: Hadwiger–Nelson problem |
instance of | e/Unsolved problems in mathematics |
Meaning | |
---|---|
Chinese | |
has gloss | zho: Hadwiger–Nelson問題是:在平面上為每點填色,最少要多少種顏色,才能使若兩點距離為1,其顏色必定不相同呢?用圖論的語言可這樣敍述:設G為圖,G的頂點是平面上的所有點,兩個頂點相鄰若且唯若它們在平面上的距離為1,求G的點色數。這個問題等於求任意G的有限子集的最大點色數。 |
lexicalization | zho: 哈德維格-納爾遜問題 |
Media | |
---|---|
media:img | Hadwiger-Nelson problem.png |
media:img | Hadwiger-Nelson.svg |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint