has gloss | eng: In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property (also known as the right lifting property or the covering homotopy axiom) is a technical condition on a continuous function from a topological space E to another one, B. It is designed to support the picture of E above B, by allowing a homotopy taking place in B to be moved upstairs to E. For example, a covering map has a property of unique local lifting of paths to a given sheet; the uniqueness is to do with the fact that the fibers of a covering map are discrete spaces. The homotopy lifting property will hold in many situations, such as the projection in a vector bundle, fiber bundle or fibration, where there need be no unique way of lifting. |