e/Homotopy lifting property

New Query

Information
has glosseng: In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property (also known as the right lifting property or the covering homotopy axiom) is a technical condition on a continuous function from a topological space E to another one, B. It is designed to support the picture of E above B, by allowing a homotopy taking place in B to be moved upstairs to E. For example, a covering map has a property of unique local lifting of paths to a given sheet; the uniqueness is to do with the fact that the fibers of a covering map are discrete spaces. The homotopy lifting property will hold in many situations, such as the projection in a vector bundle, fiber bundle or fibration, where there need be no unique way of lifting.
lexicalizationeng: homotopy lifting property
instance ofe/Fiber bundle
Meaning
Italian
has glossita: Il teorema di sollevamento dell'omotopia è un teorema di matematica, e più precisamente di topologia che collega le nozioni di rivestimento e di omotopia.
lexicalizationita: Teorema del sollevamento dell'omotopia
Russian
has glossrus: Накрывающая гомотопия для гомотопии F_t: Z\to Y при заданном отображении p:X\to Y ― гомотопия G_t : Z \to X такая, что p\circ G_t=F_t. При этом, если накрывающее отображение G_0 для отображения F_0 было задано заранее, то G_t продолжает G_0.
lexicalizationrus: Накрывающая гомотопия
Media
media:imgHomotopy lifting property.png

Query

Word: (case sensitive)
Language: (ISO 639-3 code, e.g. "eng" for English)


Lexvo © 2008-2025 Gerard de Melo.   Contact   Legal Information / Imprint