has gloss | eng: In graph theory, a maximal independent set or maximal stable set is an independent set that is not a subset of any other independent set. That is, it is a set S such that every edge of the graph has at least one endpoint not in S and every vertex not in S has at least one neighbor in S. A maximal independent set is also a dominating set in the graph, and every dominating set that is independent must be maximal independent, so maximal independent sets are also called independent dominating sets. A graph may have many maximal independent sets of widely varying sizes ; a largest maximal independent set is called a maximum independent set. |