Information | |
---|---|
has gloss | eng: In mathematics, one can define a product of group subsets in a natural way. If S and T are subsets of a group G then their product is the subset of G defined by :ST = \st : s \in S \mbox and } t\in T\} Note that S and T need not be subgroups. The associativity of this product follows from that of the group product. The product of group subsets therefore defines a natural monoid structure on the power set of G. |
lexicalization | eng: product of group subsets |
instance of | (noun) an operation that follows the rules of Boolean algebra; each operand and the result take one of two values binary arithmetic operation, boolean operation, binary operation |
Meaning | |
---|---|
German | |
has gloss | deu: Im mathematischen Teilgebiet der Gruppentheorie kommen verschiedene Produkte von Gruppen vor: |
lexicalization | deu: Produkt von Gruppen |
Polish | |
has gloss | pol: Iloczyn kompleksowy – działanie dwuargumentowe określone na podzbiorach pewnej grupy. |
lexicalization | pol: Iloczyn kompleksowy |
Chinese | |
lexicalization | zho: 群子集的乘積 |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint