e/Quasi-invariant measure

New Query

Information
has glosseng: In mathematics, a quasi-invariant measure μ with respect to a transformation T, from a measure space X to itself, is a measure which, roughly speaking, is multiplied by a numerical function by T. An important class of examples occurs when X is a smooth manifold M, T is a diffeomorphism of M, and μ is any measure that locally is a measure with base the Lebesgue measure on Euclidean space. Then the effect of T on μ is locally expressible as multiplication by the Jacobian determinant of the derivative (pushforward) of T.
lexicalizationeng: quasi-invariant measure
lexicalizationeng: Quasiinvariant measure
instance ofc/Measures (measure theory)

Query

Word: (case sensitive)
Language: (ISO 639-3 code, e.g. "eng" for English)


Lexvo © 2008-2025 Gerard de Melo.   Contact   Legal Information / Imprint