Information | |
---|---|
has gloss | eng: In mathematics, a strictly convex space is a normed topological vector space (V, || ||) for which the unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two points x and y in the boundary ∂B of the unit ball B of V, the affine line L(x, y) passing through x and y meets ∂B only at x and y. Strict convexity is somewhere between an inner product space (all inner product spaces are strictly convex) and a general normed space (all strictly convex normed spaces are normed spaces) in terms of structure. It also guarantees the uniqueness of a best approximation to an element in X (strictly convex) out of Y (a subspace of X) if indeed such an approximation exists. |
lexicalization | eng: strictly convex space |
instance of | e/Normed vector space |
Meaning | |
---|---|
Russian | |
has gloss | rus: В математике, строго нормированные пространства — это важный подкласс нормированных пространств, по своей структуре близких к гильбертовым. Для таких пространств решён вопрос единственности аппроксимаций, и это свойство находит широкое применение в вопросах вычислительной математики и математической физике. Кроме того, в строго нормированном пространстве отрезок соединяющий две точки произвольной сферы, будет целиком лежать строго внутри (за исключением граничных точек) открытого шара, ограниченного данной сферой. |
lexicalization | rus: Строго нормированное пространство |
Media | |
---|---|
media:img | Vector norms.svg |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint