Information | |
---|---|
has gloss | eng: In mathematics, a bump function is a function f: \Bbb R}^n \to \Bbb R} on a Euclidean space \Bbb R}^n which is both smooth (in the sense of having continuous derivatives of all orders) and compactly supported. The space of all bump functions on \Bbb R}^n is denoted C^\infty_0(\Bbb R}^n) or C^\infty_c(\Bbb R}^n). The dual space of this space endowed with a suitable topology is the space of distributions. |
lexicalization | eng: bump function |
instance of | e/Smooth function |
Meaning | |
---|---|
Italian | |
has gloss | ita: In matematica una funzione di cutoff o funzione bump (spesso si utilizzano direttamente i termini inglesi, cioè cutoff function e bump function) è una funzione di variabile reale che vale identicamente 1 in un determinato insieme e decade a 0 in modo liscio non appena si esce da tale insieme. |
lexicalization | ita: funzione di cutoff |
Media | |
---|---|
media:img | Bump2D illustration.png |
media:img | Mollifier illustration.png |
media:img | Venn diagram of three sets.svg |
Lexvo © 2008-2025 Gerard de Melo. Contact Legal Information / Imprint